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Abstract: Adverse birth outcomes including preterm birth (PTB: <37 weeks gestation) and 

low birth weight (LBW: <2500 g) can result in severe infant morbidity and mortality. In 

the United States, there are racial and ethnic differences in the prevalence of PTB and 
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LBW. We investigated the association between PTB and LBW with prenatal mercury (Hg) 

exposure and season of conception in an urban immigrant community in Brooklyn,  

New York. We recruited 191 pregnant women aged 18–45 in a Brooklyn Prenatal Clinic 

and followed them until delivery. Urine specimens were collected from the participants 

during the 6th to 9th month of pregnancy. Cord blood specimens and neonate anthropometric 

data were collected at birth. We used multivariate logistic regression models to investigate 

the odds of LBW or PTB with either maternal urinary mercury or neonate cord blood 

mercury. We used linear regression models to investigate the association between continuous 

anthropometric outcomes and maternal urinary mercury or neonate cord blood mercury. 

We also examined the association between LBW and PTB and the season that pregnancy 

began. Results showed higher rates of PTB and LBW in this cohort of women compared to 

other studies. Pregnancies beginning in winter (December, January, February) were at 

increased odds of LBW births compared with births from pregnancies that began in all 

other months (OR7.52 [95% CI 1.65, 34.29]). We observed no association between maternal 

exposure to Hg, and either LBW or PTB. The apparent lack of association is consistent 

with other studies. Further examination of seasonal association with LBW is warranted. 

Keywords: preterm birth; low birth weight; mercury; season of conception; urban immigrant 

 

1. Introduction 

Adverse birth outcomes including preterm birth (PTB: <37 weeks gestation) and low birth weight 

(LBW: <2500 g) result in severe infant morbidity and mortality [1,2]. Risk factors for PTB include 

increased maternal age, black race, infections, toxicant exposure (e.g., cigarette smoke and illicit drug 

use), stress, over/underweight, underlying maternal health conditions (hypertension, obesity, and 

diabetes), clinical depression, and multiple gestations and prior PTB [3]. Genetic, demographic, and 

socioeconomic factors, pre-existing medical conditions, complications during pregnancy, inadequacies 

in prenatal care, as well as consumption of tobacco, caffeine, illicit drugs and alcohol are associated 

with the risk of LBW [4–8]. Prenatal exposures to pollutants such as organochlorines, formaldehyde, 

nitrogen dioxide (NO2), and particulate matter (PM2.5, PM10) have been shown to be associated with 

altered fetal growth or PTB [8–14]. 

In the United States, there are racial and ethnic differences in the prevalence of LBW and infant 

mortality [2,15–19]. For example, non-Hispanic blacks have the highest PTB rates (15%–18%) 

compared with other racial ethnic groups [3]. Similarly, for immigrant women, maternal country of 

birth can predict adverse birth outcomes [20]. In some cases, recent immigrants had lower rates of 

adverse birth outcomes [15,21,22], but this advantage decreased with increasing years of residence and 

acculturation [23]. A plausible explanation for this observation may be changes in lifestyle, including 

dietary habits. For example, in terms of fish consumption, various recent immigrant groups such as 

Chinese and Caribbean’s have been shown to consume fish more frequently. Larger meal size could 

also contribute to higher mercury exposures [24]. 
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Fish consumption is associated with an increased exposure to mercury (Hg), and specifically methyl 

mercury (MeHg) which has the potential to cross the placenta and exert its toxic effects on the 

developing fetus. In utero Hg exposure has been linked to fetal malformations and decreased fetal 

survival in high-dose animal toxicology studies. One proposed mechanism is oxidative stress on the 

fetus [25]. Neuro-developmental disorders resulting from prenatal exposure to Hg have been 

documented previously [26–30], however the impact of Hg and frequency of fish consumption on 

adverse birth outcomes is not clearly defined or understood [31,32]. There is limited evidence of Hg 

effects on fetal growth and birth outcomes, and specifically birthweight [33,34] and some studies 

demonstrate no effects [35–37]. Others have reported an inverse association between Hg exposure and 

neonates’ attained weight during the first 24 months of life, suggesting that effects may extend beyond 

parturition [32]. Fish consumption could serve as a proxy for exposure to other bioaccumulative 

contaminants (such as PCBs) that could have adverse impacts on birthweight [38]. Alternately, the 

positive benefits of omega-3 fatty acids can be a proxy for healthy behavior/nutritional status in 

general that could impart a positive impact on birthweight [38].  

Studies have shown that, in addition to environmental and behavioral risk factors, season of 

conception and birth have been associated with adverse birth outcomes [39,40]. Temperature, air 

pollution, and increased industrial activity, as well as nutritional habits and food intake surrounding 

harvest periods or times of low food availability are examples of exposures that vary seasonally and 

may influence birth outcomes [39,41–43]. Thus season of conception or birth can be a proxy for 

exposures that vary temporally throughout the year. Seasonal association with PTB and LBW varies 

according to geographic latitude, national economic development status, predominant infectious 

diseases [39], and Vitamin D exposure [44]. Studies of racial ethnic groups in New York City have 

reported increased odds of LBW and PTB in some racial ethnic groups including immigrant 

communities such as Puerto Ricans and other Latino groups as well as in infants of mothers from the 

Sub-Saharan African region [19]. In this study, we examined the association of prenatal Hg exposure 

and season of conception with PTB and LBW in a high-risk population of African-American, 

Caribbean and West Indian women in an urban immigrant community in Brooklyn, New York. We 

further examined the association of prenatal Hg exposure with neonate anthropometric data. 

2. Materials and Methods 

2.1. Study Population and Questionnaire Assessment 

A prospective study of pregnant women was conducted at the University Hospital of Brooklyn’s 

Prenatal Clinic to investigate the association between maternal exposure to several pollutants and risk 

of adverse birth outcomes. The full study details are described elsewhere [45]. Briefly,  

a convenience sample of 191 pregnant women between the ages of 18 and 45 were recruited during the 

6–9th month of pregnancy from October 2007 to December 2009. Data were collected with  

a pretested, culturally appropriate questionnaire designed in cooperation with local community groups, 

including Caribbean physicians. The questionnaire assessed demographic and lifestyle factors that may 

contribute to Hg exposure such as dietary factors, use of Hg-containing products in the home, use of 

skin-lightening creams, occupational exposures, number of dental amalgams, and use of Hg in folk 
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medicine practices. Results of the assessment of environmental risk factors for Hg exposure are 

described in the parent study [45]. Fish and shellfish consumption was estimated by showing 

participants a pictorial chart of various fish and shellfish species and asking the women about 

frequency of consumption and type of fish consumed during the current pregnancy. All women were 

provided with educational materials that described environmental sources of Hg and methods for 

avoiding Hg exposure.  

2.2. Collection and Measurement of Maternal Urinary and Neonate Cord Blood Hg 

During the 6th to 9th month of pregnancy participants provided a ―spot‖ urine specimen for Hg and 

creatinine measurement. At delivery a physician or a midwife collected a neonatal cord blood 

specimen for total Hg determination. Chart review at birth provided demographic data including 

mother’s age, country of birth and date of immigration, race and ethnic origin, marital status and 

education level. The initial study protocol was approved by the SUNY Downstate Institutional Review 

Board (IRB) and by the New York State Department of Health’s IRB. An informed consent was 

received and signed by participants prior to participation.  

Urine specimens were collected and analyzed for creatinine at SUNY Downstate and for total Hg 

by the Trace Elements Section of the Laboratory of Inorganic and Nuclear Chemistry, Wadsworth 

Center, NYS Department of Health (DOH) using methods described previously [45]. Urine collected 

at SUNY was separated onsite into 2 mL and 10 mL aliquots. To adjust for diurnal variations in urine 

dilution, the 2 mL aliquot of urine was measured at SUNY for creatinine using the Alkaline Picrate 

Method and a Beckman Olympus Analyzer, Model AU-2700 (Beckman Coulter, Inc., Brea, CA, 

USA). The 10 mL aliquot was transferred into a trace element collection tube containing Triton X-100 

and sulfamic acid preservative to prevent losses of inorganic Hg. At the NYS DOH, total urinary Hg 

was determined using a Perkin Elmer Model DRC II (Perkin Elmer Life Sciences, Shelton CT, USA) 

inductively coupled plasma–mass spectrometer (ICP-MS) as previously described [45]. Cord blood 

specimens were analyzed for total Hg by ICP-MS, as described previously [46]. During analysis, it was 

noted that some of the cord blood specimens developed fibrin clots, which is quite common for cord 

blood. In such instances, the blood specimens were sonicated for one hour in an ultrasonic-bath, which 

was found to be sufficient to dissipate the micro-clots, and permit the analysis to proceed. The method 

limits of detection (LOD) were 0.24 and 0.09 µg/L cord blood Hg and urinary Hg, respectively [45]. All 

specimens that were found to be below the detection limit were assigned ½ LOD values.  

2.3. Statistical Analysis 

The study database included 191 mother-neonate pairs. For the purpose of this study, data analysis 

was restricted to singleton births (n = 187). Observations that included only gender (n = 2), contained 

no infant data (n = 20), or did not include data for the number of weeks gestation (n = 6), neonate birth 

weight (n = 1), and either cord blood Hg or urine Hg and urine creatinine (n = 1) were excluded, 

resulting in a final database of 159 singleton births. 

Creatinine-corrected values for urine Hg expressed in units of µg Hg per gram creatinine (µg/g) 

were used in all regression analyses. In linear regression models, appropriate transformations were 

applied to meet the normality assumption. For instance, cord blood and creatinine-corrected urine Hg 
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were natural log transformed, neonate head circumference was raised to the third power, and neonate 

length was squared. Three outliers, one extremely preterm and small neonate (27 weeks gestation,  

33 cm length and 1105 g) and two other neonates (36 weeks, 54 cm length and 4355 g, and 39 weeks, 

54 cm and 4570 g were removed from the birth weight and head circumference linear regressions, as 

such values were deemed beyond the range of possible values. 

The Kruskal-Wallis test was used to determine if the distributions of cord blood and/or maternal 

urinary Hg levels differed by LBW, PTB and/or maternal race/ethnicity. We used univariate linear 

regression to test the associations between maternal characteristics and birth weight, head 

circumference, and infant length, and multivariate linear regression to investigate the association of 

neonate cord blood or maternal urinary Hg level with birth weight, head circumference, and body 

length. Models were adjusted for previously identified risk factors impacting birthweight including 

maternal age, educational attainment, race/ethnicity, living with partner/spouse [3], and in the case of 

birthweight models, term of birth. Individual cell size was limited and thus we were unable to analyze 

dietary intake of specific predatory fish species. The outcome measures included in the logistic 

regression (LBW, PTB) were dichotomous, while those used in the linear regression (birthweight, head 

circumference) were continuous. In addition, age, education, and race were coded as categorical 

variables, while both cord blood and urinary Hg (including corrected for creatinine) were continuous 

variables. Logistic analyses were adjusted for a reduced number of study variables (maternal age and 

racial/ethnic group) due to the small number of adverse birth outcomes in the dataset. The association 

between the season of conception and the odds of LBW or PTB was also examined using logistic 

regression and comparison of sequential three-month intervals with the remainder of the year. The 

―season of conception‖ was determined by estimating the date that pregnancy began, calculated as the 

number of weeks of gestation multiplied by 7 days per week, and counted back from the infant’s day 

of birth. Mann-Whitney and chi-square tests were used to evaluate whether the characteristics of the 

study subjects included in the analyses were similar to the characteristics of the subjects excluded due 

to missing data for model covariates.  

3. Results 

Two racial/ethnic groups (African-American: 46% and Caribbean/West Indian: 39%) accounted for 

the majority of the study population (Table 1). 

The frequency of fish consumption during pregnancy was high, with 15% of the population 

reporting consumption several times per week, while the prevalence of alcohol and tobacco use was 

low (4% and 3%, respectively). Even after coding species consumed into ―low‖, ―high‖ and 

―extremely high‖ mercury exposure levels based on species ranking by the NYC Department of Health 

and Mental Hygiene [47], we did not have sufficient sample size to include type of species consumed 

into our models. We did, however, find that some participants were consuming fish high in mercury 

such as tuna and shark. The prevalence of alcohol and tobacco use was low (4% and 3%, respectively). 

Nineteen percent of neonates were born preterm (<37 weeks) and 14% were LBW (<2500 g). Median, 

25th and 75th percentiles for cord blood and creatinine-corrected urinary Hg are reported in Table 2. 
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Table 1. Study population characteristics.  

Participant Characteristics N (Percent) 

Mean Infant 

Birthweight 

(Grams) (SD) 

Mean Number 

of Weeks 

Gestation (SD) 

Race/Ethnicity 

African-American 73 (46) 3006 (546) 37.6 (2.2) 

Caribbean/West Indian 62 (39) 3104 (602) 37.9 (2.2) 

From African Continent (4),  

Latino/Hispanic (13) & Other (5) 
22 (14) 3120 (476) 38.0 (1.6) 

Did not answer 2 (1) 3673 (237) 39.5 (0.7) 

Age group 

Less than 25 year 61 (38) 3133 (469) 38.2 (2.0) 

25 to 29 year 37 (23) 3001 (579) 37.9 (2.1) 

30 to 34 year 39 (25) 3037 (620) 37.5 (2.4) 

35 and over 22 (14) 3059 (621) 37.1 (2.0) 

Educational attainment 

Some high school or less 36 (23) 3052 (541) 37.7 (2.2) 

High school certificate 50 (31) 3028 (602) 37.8 (2.2) 

Technical school, some college or more 73 (46) 3104 (545) 37.8 (2.1) 

Live with spouse/Partner 

No 81 (51) 3057 (596) 37.7 (2.3) 

Yes 77 (48) 3080 (527) 37.9 (2.0) 

Did not answer 1 (1) 3110 38 

Frequency of fish intake during this pregnancy 

Almost never or never 54 (34) 3019 (451) 37.7 (1.9) 

1–3 times per month 58 (36.5) 3117 (555) 37.9 (2.2) 

4–7 times per month 23 (14.5) 3122 (404) 38.2 (1.6) 

Several times per week 24 (15) 3013 (865) 37.3 (2.9) 

Number of dental amalgams 

None 85 (53) 3100 (523) 37.9 (1.9) 

1 to 3 40 (25) 2998 (692) 37.3 (2.7) 

4 to 6 25 (16) 3097 (499) 38.1 (2.0) 

7 or more 8 (5) 3117 (314) 38.5 (1.7) 

Did not answer 1 (1) 2120 36 

Born outside the United States 

No 84 (53) 3025 (524) 37.7 (2.1) 

Yes 75 (47) 3117 (598) 37.9 (2.2) 

Special product use 

No 147 (92) 3067 (568) 37.8 (2.2) 

Yes 9 (6) 3198 (422) 38.1 (1.8) 

Did not answer 3 (2) 2753 (558) 38.0 (2.0) 

Visited botanica * during pregnancy    

No 150 (94) 3065 (555) 37.8 (2.2) 

Yes 8 (5) 3248 (591) 38.6 (0.7) 

Did not answer 1 (1) 2120 36 

  



Int. J. Environ. Res. Public Health 2014, 11 8420 

 

 

Table 1. Cont. 

Participant Characteristics N (Percent) 

Mean Infant 

Birthweight 

(Grams) (SD) 

Mean Number 

of Weeks 

Gestation (SD) 

Alcohol use 

No 151 (95) 3084 (556) 37.8 (2.2) 

Yes 6 (4) 2656 (624) 37.2 (1.9) 

Did not answer 2 (1) 3170 (431) 38 (0) 

Tobacco use 

No 152 (96) 3074 (565) 37.8 (2.2) 

Yes 5 (3) 2872 (476) 37.6 (1.7) 

Did not answer 2 (1) 3170 (431) 38 (0) 

Season of conception 

Spring 43 (27) 3143.3(503.7) 38.3 (1.8) 

Summer 56 (35) 3109.5 (573.1) 37.7 (2.1) 

Fall 33 (21) 3066.9 (527.4) 37.6 (1.9) 

Winter 27 (17) 2867.3 (636.4) 37.3 (2.7) 

Birth weight 

Less than 2500 g 23 (14) 2132 (360) 34.8 (2.9) 

2500 g and over 136 (86) 3227 (414) 38.3 (1.5) 

Term of birth 

Preterm (less than 37 weeks) 30 (19) 2436 (616) 34.5 (2.2) 

Term (37 to 42weeks) 129 (81) 3216 (431) 38.6 (1.2) 

* A botanica is defined as a retail store that sells folk medicine, religious candles, and other products 

regarded as magical or alternative medicine. 

A significant number of respondents were missing data for cord blood Hg (92 observations) or 

urinary Hg (11 observations). Almost all (98.5%) of cord blood Hg levels and 82.7% of urinary Hg 

levels were above the method LOD. There was a significant positive correlation between maternal 

urinary Hg and cord blood Hg (r = 0.47, 95% CI 0.34–0.60, n = 75) [45]. Caribbean/West Indian 

women and neonates had the highest cord blood and maternal urinary Hg levels (2.23 µg/L and  

0.48 µg/g, respectively), but they were not significantly different from African-American,  

African-continent or Latina women. LBW neonates did not significantly differ in cord blood or 

maternal urinary Hg levels compared to neonates weighing over 2500 g (1.70 µg/L and 0.39 µg/g 

compared to 1.96 µg/L and 0.38 µg/g, p > 0.05). Similarly, cord blood or maternal urinary Hg levels 

did not differ by timing of birth (1.50 µg/L and 0.45 µg/g (PTB) compared to 1.98 µg/L and 0.35 µg/g 

(term birth group), p > 0.05). Maternal urinary Hg levels were lowest in the summer and these findings 

were statistically significantly different from the fall (p = 0.01). When the observations were restricted 

to only those observations included in the LBW and PTB seasonal models, no significant seasonal 

difference in maternal urinary Hg occurred (p = 0.06, data not shown). We observed no increase in the 

odds of LBW or PTB associated with either neonate cord blood Hg or maternal urinary Hg (Refer to 

Table 3). There was no association of LBW or PTB associated with neonate cord blood Hg or maternal 

urinary Hg when stratified by season (data not shown).  
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Table 2. Cord Blood Hg and Creatinine Corrected Maternal Urinary Hg. 

Participant 

Characteristics 

Cord Blood Hg (µg/L) Urinary Hg (µg/g Creatinine) 

N Median [Q1, Q3] 
a 

p-Value 
b
 N Median [Q1, Q3] p-Value 

b 

Race/Ethnicity 

African-American 29 1.49 [0.9, 2.64] 0.10 63 0.35 [0.11, 0.78] 0.22 

Caribbean/West Indian 26 2.23 [1.78, 4.20]  59 0.48 [0.16, 0.83]  

From African 

continent, Latino/ 

Hispanic & Other 

11 1.44 [0.8, 5.02]  22 0.28 [0.07, 0.63]  

Neonate birth weight 

Less than 2500 g 10 1.70 [1.30, 2.04] 0.63 21 0.39 [0.08, 0.67] 0.60 

2500g and over 57 1.96 [1.15, 3.65]  125 0.38 [0.14, 0.80]  

Week of gestation at birth 

Less than 37 11 1.50 [1.30, 2.04] 0.19 28 0.45 [0.19, 0.74] 0.69 

37 to 42 56 1.98 [1.20, 4.70]  118 0.35 [0.12, 0.79]  

Season of conception 

Spring 21 2.27 [1.11, 4.90] 0.20 42 0.33 [0.14, 0.74] 0.04 

Summer 14 1.47 [0.81, 1.80]  53 0.28 [0.07, 0.61]  

Fall 14 2.13 [1.37, 3.65]  28 0.66 [0.25, 0.89]  

Winter 18 1.91 [1.25, 4.95]  23 0.44 [0.26, 0.80]  

a Q1 = 25th percentile, Q3 = 75th percentile; b Kruskal-Wallis ANOVA p-value. 

Similarly, there was no significant change in birth weight, body length, or head circumference with 

changes in neonate cord blood or maternal urinary Hg (Table 4). Adjustment for fish consumption 

(data not shown) in linear and logistic models did not change results considerably. 

The overall findings did not change when the analysis was stratified by presence or absence of 

dental amalgams (data not shown).  

Table 3. Association of cord blood Hg and urinary Hg with preterm birth and low birth 

weight (LBW). 

Logistic Regressions 
a 

Odds Ratio 95% Confidence Interval (CI) p-Value 
b
 

LBW 

Cord blood Hg (n = 66) 1.07 [0.72, 1.61] 0.73 

Creatinine-corrected urine Hg (n = 144) 0.51 [0.14, 1.87] 0.27 

PTB 

Cord blood Hg (n = 66) 0.65 [0.38, 1.12] 0.04 

Creatinine-corrected urine Hg (n = 144) 0.78 [0.38, 1.59] 0.48 
a Logistic regressions were adjusted for maternal age group and racial ethnic group. LBW model included 

term of birth. bLikelihood ratio test p-values. Models including either cord blood Hg or creatinine-corrected 

urine Hg did not provide better fit than reduced models not containing either cord blood Hg or  

creatinine-corrected urine Hg variable (Likelihood ratio test p > 0.05) except for the PTB cord blood Hg 

model (LR p = 0.03); however, all women (n = 10) who reported consuming fish 4–7 times per month and 

who had neonate cord blood Hg measurements had term deliveries and were dropped from the logistic 

regression analysis for PTB. 
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Table 4. Association of cord blood Hg and urinary Hg with neonate birth weight, head 

circumference and length. 

Linear Regressions
 

β Coefficients 
a 

95% CI p-Value 
b 

Birth weight (in grams) 

Cord blood Hg (n = 64) 4.42 [−7.38, 16.22] <0.01 

Creatinine-corrected urine Hg (n = 140) −1.23 [−7.35, 4.88] <0.01 

Head Circumference (cubed, in cm3) 

Cord blood Hg (n = 64) 61.16 [−66.25, 188.57] 0.05 

Creatinine-corrected urine Hg (n = 137) 3.63 [−66.84, 74.10] <0.01 

Length (squared, in cm2) 

Cord blood Hg (n = 62) −0.24 [−10.46, 9.98] 0.16 

Creatinine-corrected urine Hg (n = 133) −1.74 [−6.20, 2.71] <0.01 

Linear regressions were adjusted for age group, education attainment, racial/ethnic group, and living with 

partner/ spouse. Birth weight models also included term of birth. a β–coefficients represent the change in 

outcome variable (birth weight (g), head circumference (cm3), and length (cm2)) with each 10% increase in 

cord blood or maternal urine Hg; b Likelihood ratio test p-values. 

Mann-Whitney and chi-square tests were used to evaluate whether the characteristics of the study 

subjects included in the multivariate analysis were similar to the characteristics of the subjects 

excluded due to missing data for model covariates. Refer to Appendix Tables A1–A8. For the LBW 

and PTB logistic regressions which included the cord blood mercury variable, excluded subjects were 

more likely than included subjects to live with a spouse or partner (55% and 39%, respectively,  

p = 0.05) and report alcohol use (6.5% and 0%, respectively, p = 0.03). For the linear regressions that 

included the cord blood mercury variable, none of the study subjects included in the analysis reported 

alcohol use, which was statistically significantly different than the excluded population (0% and 6.5%, 

respectively, p = 0.04). For the logistic and linear regressions that included the maternal urinary 

mercury variable, the excluded subject group included a higher percentage of African-American 

women in comparison to Caribbean/West Indian women (for example, 77% African-American and 

23% Caribbean/West Indian in the excluded group compared to 44% and 41%, respectively for the 

subjects included in the PTB and LBW analysis, p = 0.02). There were no other statistical differences 

between the groups in regards to participant characteristics. 

Figure 1 shows higher percentages of LBW births during the months of December through March.  

Odds ratios for season of conception derived based on 3 month groupings is provided in Table 5. The 

largest OR is found in the three-month aggregate of December, January, and February adjusted for 

maternal age and racial/ethnic group were OR: 7.52 [95% CI 1.65, 34.29] (Table 5).  

The association of season of conception and PTB was similar, but not significant (winter versus all 

other seasons OR: 1.33 [95% CI 0.46, 3.80]). 
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Figure 1. Percent of neonates with low birthweight by month of conception.  

 

Table 5. Association of season of conception with adverse birth outcomes. 

Season of Conception  OR 95% CI p-value 
a
 

LBW 

Winter (December, January, 

February) vs. all other months 
7.52 [1.65, 34.29] p = 0.01 

Spring (March, April, May) vs.  

all other months 
0.59 [0.15, 2.29] p = 0.44 

Summer (June, July, August) vs.  

all other months 
0.75 [0.21, 2.61] p = 0.65 

Fall (September, October, November) 

vs. all other months 
0.42 [0.09, 1.89] p = 0.24 

Preterm Birth 

Winter (December, January, 

February) vs. all other months 
1.33 [0.46, 3.80] p = 0.60 

Spring (March, April, May)  

vs. all other months 
1.01 [0.39, 2.62] p = 0.98 

Summer (June, July, August)  

vs. all other months 
0.62 [0.25, 1.56] p = 0.30 

Fall (September, October, November) 

vs. all other months 
1.39 [0.53, 3.66] p = 0.51 

LBW models were adjusted for term of birth, maternal age group and race/ethnicity. PTB models were 

adjusted for maternal age group and race/ethnicity. Dates are coded as Spring (1 March–31 May), Summer  

(1 June–31 August), Fall (1 September–31 November ) and Winter (1 December–28/9 February). N = 157 

for all models, there were 23 LBW neonates and 30 PTB neonates in total. a Likelihood ratio test p-values. 

Models containing the seasonal variable did not provide a significantly better fit than the reduced models 

(Likelihood ratio test p > 0.05) except for the LBW winter model (LR p = 0.01). 
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4. Discussion 

PTB and LBW disproportionately affect minority populations and result in acute and chronic health 

impacts. Previous studies report that cultural practices may increase exposure to Hg through dietary 

consumption [48]. Fish consumption habits reported in this study, such as higher reported consumption 

in certain racial/ethnic groups, were in line with those reported in McKelvey et al. (2011) [49] in the 

NYC population. This study found no association between neonate cord blood Hg or maternal urinary 

Hg levels and LBW or continuous anthropometric outcomes, and no association of maternal urinary 

Hg with PTB. This could suggest that though these women were exposed to Hg, fish consumption had 

a beneficial effect on gestation length as seen in prior studies [50,51], or could indicate sampling error 

due to the small sample size. The cord blood Hg levels found in this study were lower than in other 

studies reporting an association between decreased birth weight with increased Hg exposure. In a study 

of women exposed to Hg through consumption of traditional diets in Greenland, Foldspang and 

Hanson (1990) [52] reported decreased birth weight with increasing maternal and neonate cord blood 

levels, but neonate cord blood Hg levels ranged from 2 to 136 µg/L, with a mean of 21.0 µg/L [52]. 

Consumption habits and consequent MeHg levels from this population certainly cannot be considered 

within the ―normal‖ range of most fish-consuming populations, such as in most areas of the USA [48].  

Ramon et al (2009) [33] also reported a negative association between cord blood Hg and mean birth 

weight, but maternal fish consumption was also much higher (only 1.6% of women reported rarely or 

never eating fish compared to 34% in this cohort) and 72% of the neonates had cord blood Hg  

levels >5.8 µg/L [33]. Maternal urinary Hg in this study ranged from 0.24 to 3.50 µg/g with a 

geometric mean of 0.32 µg/g and 95th percentile of 1.9 µg/g. In a comparison study, the population-

weighted geometric mean and 95th percentile of 0.63 and 0.83 µg/g, and 1.13 and 1.45 µg/g, 

respectively, was reported in Non-Hispanic Blacks and Caribbean-born Non-Hispanic Blacks in New 

York City [49]. Thus findings from our study are in line with levels found in large population-based 

studies in the USA. 

Differences in Hg levels may be attributed to cultural differences in quantity of meal or type of fish 

consumed as well as local availability of various types of fish. The lack of association between total 

blood Hg exposure, mainly MeHg, and birth outcomes in this study is consistent with other studies of 

low-level Hg exposure that have also have found no association [18]. Sample size limitations could 

contribute to lack of association found, as well as use of maternal urinary Hg in our birth outcomes 

models, a less accurate measure of MeHg exposure than total Hg in blood [53] which was the main 

measure of exposure used in comparable studies examining birthweight. Accounting for varying levels 

of fish consumption, which has been done in prior studies, had no measureable effect on model results. 

Our study revealed increased odds of LBW neonates for pregnancies that began in December, 

January and February. In an Australian study, Ford (2011) [54] found a similar association of small for 

gestational age neonates and season of conception (2 × 2 contingency test, p = 0.01). Of 401 live births 

born to 585 couples enrolled in a prospective study, 11 of the neonates had birth weights lower than 

the 3rd percentile of national weights. Six of these neonates were conceived in winter, while 5 were 

conceived in spring [54]. Other studies that examine the association of birth weight with season of 

birth have found elevated rates of LBW in summer and autumn compared to winter and spring [19], 

which would be consistent with a season of conception in fall and winter.  
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This study did not find an association between the season of conception and PTB. In contrast, 

Bodnar and Simhan (2008) [55] found that the peak prevalence of PTB in a retrospective cohort study  

of 82,213 singleton livebirths. The present study is not sufficiently powered to identify small 

differences in prevalence of PTB as identified in the Bodnar and Simhan study [55]. Season serves as a 

proxy for geophysical conditions, environmental exposures, and psychosocial events such as annual 

religious holidays [56,57]. The observed association may also be due to lower Vitamin D uptake 

during winter months. Season can also serve as a proxy for exposure to air pollutants that vary, 

particularly those related to petroleum products and vehicle exhaust such as 1,3 butadiene, benzene, 

xylene and cadmium, increase in the winter [58]. Additional combustion byproducts of fuel 

consumption released during winter could include PM and other possible co-varying pollutants such as 

SO2, both of which have been associated with effects on birthweight [59,60]. Levels of indoor and 

outdoor non-volatile polycyclic aromatic hydrocarbons (PAHs) have been shown to increase during the 

heating season in New York City [60] and levels of ambient volatile organic compounds benzo[a]pyrene, 

toluene, ethylbenzene, and xylene were higher in winter in a Camden, New Jersey study [61]. The 

increased incidence of infectious diseases in the winter also cannot be ruled out. In contrast, several studies 

show a seasonal effect of elevated blood lead levels in summer months due to increased play in outdoor 

contaminated areas, increased hand to mouth activity, and possibly even physiologic factors [62]. 

This study is the first to examine exposure to Hg and season of conception with risk of LBW and 

PTB birth in this New York City community. In a prior study in this same population, Lijinian et al 

(1997) [63] found an association between preterm labor and high heat-humidity index, stressing the 

need for further study of seasonality effects on timing of birth. Seasonal variability in birth weight has 

been associated with temperature in previous studies [64,65]. Strengths of this study include the 

prospective study design and the inclusion of a population at high risk for adverse birth outcomes and 

increased fish consumption. The use of individual-level measures of maternal and neonate Hg 

exposures removes bias by providing an independent level of measurement that is not subject to recall 

bias or misclassification error that can occur if exposure is solely determined by a diet history. Medical 

records provided neonate anthropometric data as well as immigration history for the non-US born 

women. One of the limitations of the study is convenience sampling, which may have resulted in 

selection bias. It is possible that that the lack of an association between Hg exposure and adverse birth 

outcomes is due to beneficial actions of ω-3 fatty acids available through fish consumption. Though 

levels of ω-3 fatty acids were not measured directly in these women, we adjusted models for fish 

consumption (data not shown) to account for possible nutritional benefits and as a proxy for healthy 

lifestyle effects on birthweight. Adjustment for fish consumption did not measurably change model 

results. The measures of prenatal exposure were limited to two different time points, and thus could 

have led to inaccurate characterization of exposure. Additionally, the small sample size may have 

limited our ability to detect an association. The season of conception may have been misclassified 

during calculation of the date of conception, as estimation of gestational age using either a woman’s 

recall of the first day of her last menstrual period, or ultra-sound dating that may be inaccurate [66,67]. 

Classifying pregnancies that began within a few days of the end of the season may have biased the 

association, since the majority of the beginning of the first trimester would have occurred during the 

adjacent season. Other parameters that may have influenced birth weight such as parity, maternal 

height, weight and body mass index [68,69] were unavailable and were not included in regression 
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models. Neighborhood-level effects such as the level of neighborhood organization, ethnic density and 

other psychosocial factors have been associated with PTB and/or LBW but were not examined in this 

study [70–73]. Since season of conception and season of birth are not independent, seasonal exposures 

during other seasons may be driving the association seen in this study.  

In conclusion, this study is consistent with others that do not show an association between prenatal 

Hg exposure and adverse birth outcomes. Further examination of the factors that may influence the 

seasonal association with LBW is needed. 
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Appendix 

Table A1. Comparison of included versus excluded cases for cord blood Hg and LBW and 

PTB models. CI= included in model, CE = excluded. 

Participant Characteristics CI (66) CE (93) p-Value 

Race/Ethnicity   0.47 

African-American 29 44  

Caribbean/West Indian 26 36  

From African Continent, Latino/Hispanic & Other 11 11  

Did not answer  2  

Age group   0.72 

Less than 25 year 27 34  

25 to 29 year 14 23  

30 to 34 year 16 23  

35 and over 9 13  

Educational attainment   0.27 

Some high school or less 17 19  

High school certificate 22 28  

Technical school, some college or more 27 46  

Live with spouse/partner   0.05 

No 40 (61%) 41 (44%)  

Yes 26 (39%) 51 (55%)  

Did not answer 0 1  
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Table A1. Cont. 

Participant Characteristics CI (66) CE (93) p-Value 

Frequency of fish intake during this pregnancy   0.55 

Almost never or never 21 33  

1–3 times per month 24 34  

4–7 times per month 10 13  

Several times per week 11 13  

Number of dental amalgams   0.92 

None 35 50  

1 to 3 18 22  

4 to 6 7 18  

7 or more 5 3  

Did not answer 1   

Born outside the United States   0.21 

No 31 53  

Yes 35 40  

Special product use   0.18 

No 59 88  

Yes 6 3  

Did not answer 1 2  

Visited botanica during pregnancy   0.21 

No 62 88  

Yes 3 5  

Did not answer 1   

No 66 85  

Yes 0 (0%) 6 (6.5%)  

Did not answer  2  

Tobacco use    

No 66 86 0.053 

Yes 0 (0%) 5 (5.4%)  

Did not answer  2  

Birth weight   0.84 

Less than 2500 g 10 13  

2500 g and over 56 80  

Term of birth   0.55 

Preterm (less than 37 weeks) 11 19  

Term (37 to 42weeks) 55 74  
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Table A2. Comparison of included versus excluded cases for urine Hg and LBW and PTB 

models. UI = included in model, UE = excluded. 

Participant Characteristics UI (144) UE (15) p-Value 

Race/Ethnicity   0.02 

African-American 63 (44%) 10 (77%) 14%exc 

Caribbean/West Indian 59 (41%) 3 (23%) 5%exc 

From African Continent,Latino/ 

Hispanic & Other 
22 0  

Did not answer  2  

Age group   0.60 

Less than 25 year 54 7  

25 to 29 y year 35 2  

30 to 34 year 34 5  

35 and over 21 1  

Educational attainment   0.11 

Some high school or less 34 2  

High school certificate 47 3  

Technical school, some college or more 63 10  

Live with spouse/partner   0.36 

No 75 6  

Yes 68 9  

Did not answer 1 0  

Frequency of fish intake during this pregnancy   0.56 

Almost never or never 51 3  

1–3 times per month 50 8  

4–7 times per month 21 2  

Several times per week 22 2  

Number of dental amalgams   0.97 

None 77 8  

1 to 3 37 3  

4 to 6 24 1  

7 or more 6 2  

Did not answer  1  

Born outside the United States   0.56 

No 75 9  

Yes 69 6  

Special product use   0.50 

No 135 12  

Yes 9 0  

Did not answer  3  

Visited botanica during pregnancy   0.37 

No 62 88  

Yes 3 5  

Did not answer 1 0  
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Table A2. Cont. 

Participant Characteristics UI (144) UE (15) p-Value 

Alcohol use   0.55 

No 137 14  

Yes 5 1  

Did not answer 2 0  

Tobacco use   0.46 

No 137 15  

Yes 5 0  

Did not answer 2   

Birth weight   0.90 

Less than 2500 g 21 2  

2500 g and over 123 13  

Term of birth   0.57 

Preterm (less than 37 weeks) 28 2  

Term (37 to 42weeks) 116 13  

Table A3. Comparison of included versus excluded cases for linear regression of 

birthweight and urinary Hg. BWLRUI = included in model. BWLRUE = excluded. 

Participant Characteristics BWLRUI BWLRUE p-Value 

Race/Ethnicity   0.02 

African-American 61 12  

Caribbean/West Indian 57 5  

From African Continent, Latino/Hispanic & 

Other 
22 0  

Did not answer  2  

Age group   0.74 

Less than 25 year 54 7  

25 to 29 year 34 3  

30 to 34 year 32 7  

35 and over 20 2  

Educational attainment   0.14 

Some high school or less 33 3  

High school certificate 46 4  

Technical school, some college or more 64 12  

Live with spouse/partner   0.91 

No 72 9  

Yes 68 9  

Did not answer  1  

Frequency of fish intake during this pregnancy   0.32 

Almost never or never 50 4  

1–3 times per month 49 9  

4–7 times per month 21 2  

Several times per week 20 4  
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Table A3. Cont. 

Participant Characteristics BWLRUI BWLRUE p-Value 

Number of dental amalgams   0.87 

None 75 10  

1 to 3 35 5  

4 to 6 24 1  

7 or more 6 2  

Did not answer  1  

Born outside the United States   0.64 

No 73 11  

Yes 67 8  

Special product use   0.43 

No 129 18  

Yes 9 0  

Did not answer 2 1  

Visited botanica during pregnancy   0.30 

No 132 18  

Yes 8 0  

Did not answer  1  

Alcohol use   0.73 

No 133 18  

Yes 5 1  

Did not answer 2   

Tobacco use   0.40 

No 133 19  

Yes 5 0  

Did not answer 2   

Birth weight   0.86 

Less than 2500 g 20 3  

2500 g and over 120 16  

Term of birth   0.80 

Preterm (less than 37 weeks) 26 4  

Term (37 to 42weeks) 114 15  

Table A4. Linear regression model of birthweight and cord blood Hg. BWLRCI = included 

in model, BWLRCE = excluded.  

Participant Characteristics BWLRCI BWLRCE p-Value 

Race/Ethnicity   0.43 

African- American 28 45  

Caribbean/West Indian 25 37  

From African Continent, Latino/Hispanic & 

Other 
11 11  

Did not answer  2  
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Table A4. Cont. 

Participant Characteristics BWLRCI BWLRCE p-Value 

Age group   0.45 

Less than 25 year 27 34  

25 to 29 year 14 23  

30 to 34 year 15 24  

35 and over 8 14  

Educational attainment   0.23 

Some high school or less 17 19  

High school certificate 21 29  

Technical school, some college or more 26 47  

Live with spouse/partner   0.09 

No 38 43  

Yes 26 51  

Did not answer  1  

Frequency of fish intake during this pregnancy   0.92 

Almost never or never 21 33  

1–3 times per month 24 34  

4–7 times per month 10 13  

Several times per week 9 15  

Number of dental amalgams   0.95 

None 34 51  

1 to 3 17 23  

4 to 6 7 18  

7 or more 5 3  

Did not answer 1   

Born outside the United States   0.22 

No 30 54  

Yes 34 41  

Special product use   0.16 

No 56 91  

Yes 6 3  

Did not answer 2 1  

Visited botanica during pregnancy   0.89 

No 60 90  

Yes 3 5  

Did not answer 1 0  

Alcohol use    

No 64 87 0.04 

Yes 0 6  

Did not answer  2  

Tobacco use    

No 64 88 0.06 

Yes 0 5  

Did not answer  2  
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Table A4. Cont. 

Participant Characteristics BWLRCI BWLRCE p-Value 

Birth weight   0.73 

Less than 2500 g 10 13  

2500 g and over 54 82  

Term of birth   0.40 

Preterm (less than 37 weeks) 10 20  

Term (37 to 42weeks) 54 75  

Table A5. Linear regression model of head circumference and cord blood Hg.  

HCLRCI = included in model, HCLRCE = excluded. 

Participant Characteristics HCLRCI HCLRCE p-Value 

Race/Ethnicity   0.42 

African-American 28 45  

Caribbean/West Indian 25 37  

From African Continent, Latino/Hispanic & 

Other 
11 11  

Did not answer    

Age group   0.45 

Less than 25 y 27 34  

25 to 29 y 14 23  

30 to 34 y 15 24  

35 and over 8 14  

Educational attainment   0.23 

Some high school or less 17 19  

High school certificate 21 29  

Technical school, some college or more 26 47  

Live with spouse/partner   0.09 

No 38 43  

Yes 26 51  

Did not answer  1  

Frequency of fish intake during this pregnancy   0.91 

Almost never or never 21 33  

1–3 times per month 34 34  

4–7 times per month 10 13  

Several times per week 9 15  

Number of dental amalgams   0.95 

None 34 51  

1 to 3 17 23  

4 to 6 7 18  

7 or more 5 3  

Did not answer 1   

Born outside the United States   0.22 

No 30 54  

Yes 34 41  
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Table A5. Cont. 

Participant Characteristics HCLRCI HCLRCE p-Value 

Special product use   0.16 

No 56 91  

Yes 6 3  

Did not answer 2 1  

Visited botanica during pregnancy   0.89 

No 60 90  

Yes 3 5  

Did not answer 1   

Alcohol use   0.04 

No 64 87  

Yes 0 6  

Did not answer  2  

Tobacco use    

No 64 88 0.06 

Yes 0 5  

Did not answer  2  

Birth weight   0.73 

Less than 2500 g 10 13  

2500 g and over 54 82  

Term of birth   0.39 

Preterm (less than 37 weeks) 10 20  

Term (37 to 42weeks) 54 75  

Table A6. Linear regression model of head circumference and urinary Hg.  

HCLRUI = included in model, HCLRUE = excluded. 

Participant Characteristics HCLRUI HCLRUE p-Value 

Race/Ethnicity    

African-American 59 14 0.02 

Caribbean/West Indian 57 5  

From African Continent, Latino/Hispanic & 

Other 
21 1  

Did not answer  2  

Age group   0.54 

Less than 25 year 53 8  

25 to 29 year 34 3  

30 to 34 year 31 8  

35 and over 19 3  

Educational attainment   0.53 

Some high school or less 31 5  

High school certificate 45 5  

Technical school, some college or more 61 12  
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Table A6. Cont. 

Participant Characteristics HCLRUI HCLRUE p-Value 

Live with spouse/partner   0.72 

No 71 10  

Yes 66 11  

Did not answer  1  

Frequency of fish intake during this pregnancy   0.36 

Almost never or never 49 5  

1–3 times per month 48 10  

4–7 times per month 20 3  

Several times per week 20 4  

Number of dental amalgams   0.44 

None 72 13  

1 to 3 35 5  

4 to 6 24 1  

7 or more 6 2  

Did not answer  1  

Born outside the United States   0.53 

No 71 13  

Yes 66 9  

Special product use   0.96 

No 127 20  

Yes 8 1  

Did not answer 2 1  

Visited botanica during pregnancy   0.26 

No 129 21  

Yes 8 0  

Did not answer  1  

Alcohol use   0.85 

No 130 21  

Yes 5 1  

Did not answer    

Tobacco use   0.36 

No 130 22  

Yes 5 0  

Did not answer    

Birth weight   0.91 

Less than 2500 g 20 3  

2500 g and over 117 19  

Term of birth   0.62 

Preterm (less than 37 weeks) 25 5  

Term (37 to 42weeks) 112 17  
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Table A7. Linear regression model of neonate length and urinary Hg. LLRUI = included in 

model, LLRUE = excluded. 

Participant Characteristics LLRUI LLRUE p-Value 

Race/Ethnicity   0.04 

African- American 57 16  

Caribbean/West Indian 56 3  

From African Continent, Latino/Hispanic & 

Other 
20 2  

Did not answer  2  

Age group   0.86 

Less than 25 year 50 11  

25 to 29 year 32 5  

30 to 34 year 33 6  

35 and over 18 4  

Educational attainment   0.26 

Some high school or less 31 5  

High school certificate 44 6  

Technical school, some college or more 58 15  

Live with spouse/partner   0.72 

No 69 12  

Yes 64 13  

Did not answer  1  

Frequency of fish intake during this pregnancy   0.52 

Almost never or never 48 6  

1–3 times per month 45 13  

4–7 times per month 20 3  

Several times per week 20 4  

Number of dental amalgams   0.47 

None 69 16  

1 to 3 36 4  

4 to 6 23 2  

7 or more 5 3  

Did not answer  1  

Born outside the United States   0.59 

No 69 15  

Yes 64 11  

Special product use   0.46 

No 124 23  

Yes 7 2  

Did not answer 2 1  

Visited botanica during pregnancy   0.79 

No 126 24  

Yes 7 1  

Did not answer  1  



Int. J. Environ. Res. Public Health 2014, 11 8441 

 

 

Table A7. Cont. 

Participant Characteristics LLRUI LLRUE p-Value 

lcohol use   0.26 

No 127 24  

Yes 4 2  

Did not answer 2   

Tobacco use   0.83 

No 127 25  

Yes 4 1  

Did not answer 2   

Birth weight   0.28 

Less than 2500 g 21 2  

2500 g and over 112 24  

Term of birth   0.30 

Preterm (less than 37 weeks) 27 3  

Term (37 to 42weeks) 106 23  

Table A8. Linear regression model of neonate length and cord blood Hg. LLRCI = 

included in model, LLRCE = excluded. 

Participant Characteristics LLRCI LLRCE p-Value 

Race/Ethnicity   0.86 

African-American 29 44  

Caribbean/West Indian 23 39  

From African Continent, Latino/Hispanic & 

Other 
10 12  

Did not answer  2  

Age group   0.49 

Less than 25 year 26 35  

25 to 29 year 13 24  

30 to 34 year 16 23  

35 and over 7 15  

Educational attainment   0.13 

Some high school or less 17 19  

High school certificate 21 29  

Technical school, some college or more 24 49  

Live with spouse/partner   0.09 

No 37 44  

Yes 25 52  

Did not answer  1  

Frequency of fish intake during this pregnancy   0.93 

Almost never or never 21 33  

1–3 times per month 22 36  

4–7 times per month 10 13  

Several times per week 9 15  



Int. J. Environ. Res. Public Health 2014, 11 8442 

 

 

Table A8. Cont. 

Participant Characteristics LLRCI LLRCE p-Value 

Number of dental amalgams   0.83 

None 33 52  

1 to 3 17 23  

4 to 6 7 18  

7 or more 4 4  

Did not answer    

Born outside the United States   0.57 

No 31 53  

Yes 31 44  

Special product use   0.41 

No 55 92  

Yes 5 4  

Did not answer 2 1  

Visited botanica during pregnancy   0.95 

No 58 92  

Yes 3 5  

Did not answer 1   

Alcohol use    

No 62 89 0.04 

Yes 0 6  

Did not answer  2  

Tobacco use   0.07 

No 62 90  

Yes 0 5  

Did not answer  2  

Birth weight   0.63 

Less than 2500 g 10 13  

2500 g and over 52 84  

Term of birth   0.77 

Preterm (less than 37 weeks) 11 19  

Term (37 to 42weeks) 51 78  
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